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Abstract. Whereas the order parameter of a phase transition is transformed either as the 
components of the electric or magnetic polarisation, or as a linear combination of the 
deformation tensor components, the velocities of the electromagnetic waves and of sound, 
which propagate in a definite symmetry direction, become zero when approaching a critical 
point. A rather large class of such phase transitions of the second kind, the order parameter 
of which is transformed simultaneously as the electric and magnetic polarisations or as both 
polarisationand thecomponentsof the deformation tensor, isstudiedin the present paper. In 
the latter case the bound electromagnetic and sound waves stand for softening hydrodynamic 
modes. It is shown that at such ‘combined’ phase transitions qualitatively new effects arise 
in the behaviour of the softening hydrodynamic waves. The strongest anomalies are observed 
at magnetoelectric phase transitions. 

1. Introduction 

In a variety of phase transitions of the second kind the dipole-active and ferroelastic 
ones occupy a special position. In the first case the order parameter of the phase transition 
is transformed as some linear combination of the components of the electricp or magnetic 
m polarisation vectors. In the second one it is transformed as a linear combination of 
the deformation tensor components li. The said phase transitions possess some unique 
properties, which make them different from others. 

Every ferroelastic and dipole-active phase transition has a corresponding softening 
long-wave hydrodynamic mode. For the case of ferroelastics the transverse sound of a 
definite polarisation, which propagates in some symmetry directions, stands for this 
mode. At dipole-active transitions the electromagnetic waves play the role of the soften- 
ing hydrodynamic mode. In both cases the velocity of the softening waves becomes 
zero, the exception being ferroelastic phase transitions in polarised crystals, where this 
problem cannot be interpreted unambiguously [ 11. 

The above statement follows from the fact that the velocities of transverse sound U, 
and the electromagnetic wave U, in a crystal are defined by the following expressions: 

U, = (ps) -”2  U, = C ( P & )  -1’2 (1) 
where s is the modulus of pliability (the inverse of the shear modulus of a crystal), p is 
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the density, c is the light velocity in vacuum, E and y are some tensor components of 
dielectric and magnetic permeabilities. At ferroelastic, ferroelectric or ferromagnetic 
transitions s, E or y values respectively tend to infinity, this being necessary for the 
velocities U, or U, to become zero. 

Naturally, such simple considerations are valid only within the hydrodynamic limits, 
i.e. when 

w e w o  q -e r;‘ (2) 
where w o  is the lowest of the frequencies characterising the internal degrees of freedom 
of a crystal and r, is the correlation length. In this frequency range the effects of spatial 
and temporal dispersion are not important; s, E and y values in (1) coincide with the 
thermodynamic limits (hydrodynamic principle of local equilibrium). We use these long- 
wave hydrodynamic limits; all the following considerations will refer to (2). 

The described simple pattern of critical behaviour of the softening branches of either 
sound or electromagnetic waves is related only to those cases where the order parameter 
of the phase transition is transformed as one of the values p ,  m or Li. If this is not 
so, provided the phase transition is simultaneously ferroelastic and dipole-active, the 
question of the origin of the softening branch (sound or electromagnetic wave?) still 
remains open. Such ‘combined’ phase transitions are not uncommon. In particular, the 
majority of magnetic spin-reoriented transitions are both dipole-active and ferroelastic. 
Besides, some crystals are known to have both electric and magnetic polarisations 
involved in the phase transition. In the general case such ‘combined’ transitions are 
possible in crystals that permit linear piezoelectric, piezomagnetic or magnetoelectric 
effects. Consequently, we shall call the mentioned transitions piezoelectricp-Li, piezo- 
magnetic m-Li and magnetoelectricp-m ones. Obviously, only in the presence of either 
external magnetic field or spontaneous magnetic ordering may one expect p-m and m-Li 
transitions (the time inversion operation 1‘ must be absent in the symmetry group of the 
initial phase). 

Thus, the study of the origin and peculiarities of the critical behaviour of the softening 
branches of acoustic and electromagnetic waves at ferroelastic and dipole-active tran- 
sitions in crystals with linear piezoelectric, piezomagnetic or magnetoelectric effects is 
the main purpose of the present paper. This problem attracts considerable interest first 
of all due to the originality of the electromagnetic and acoustic properties of such crystals, 
the most pronounced in the critical region. In such crystals expressions of type (1) for 
the transverse sound and electromagnetic wave velocities are not applicable even within 
the hydrodynamic limits q ,  w + 0. 

Specifically, in crystals with a linear piezo-effect the excitation dynamics is now 
described by a common set of bound equations for the electrodynamics and mechanics 
of the continuous media. And, though the corrections to velocities U, and U, from (1) 
caused by such binding are very small, in a number of cases a qualitative change occurs 
in the wave propagation pattern, accessible to experimental observation. Finally, in 
crystals with a linear magnetoelectric effect the velocities of propagation of sound and 
electromagnetic waves in forward and backward directions may become different. It is 
these specific effects that may turn out to be most essential and pronounced in the critical 
region. Their theoretical study is based on a sequential application of group theory 
methods. 

We shall confine our discussion to the softening branches, which almost always 
are purely transverse. In other words, the alternating electric and magnetic fields, 
polarisation and displacements due to the propagation of plane electromagnetic and 
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sound waves with small amplitude turn out to be orthogonal to the wavevector q in all 
cases of interest: 

E ,  H ,  D, B ,  PI m ,  U 4. (3) 
The relation (3) makes the analysis of wave equations very simple. 

From [2], the set of directions of wavevectors, to which the softening hydrodynamic 
waves conform, coincides with the set of wavevectors, to which the anomalous critical 
fluctuations conform. This allows one to use the results from [3] and [4] to search for 
such directions q. These directions are listed in [5] for ferroelastic transitions in crystals 
without the magnetoelectric effect. 

Dielectric crystals are mainly discussed in the present paper. Effects connected with 
electrical conductivity may qualitatively change some of the results mentioned below. 
They are considered in the conclusion. 

2. Peculiarities of propagation of magnetic waves at phase transitions in crystals with 
linear magnetoelectric effect 

2.1. Magnetoelectric transitions and magnetic classes 

Assume there is a bilinear coupling between the order parameter of the phase transition 
and the components of the vectorsp and m. We shall call such transitions magnetoelectric 
and they are possible only in crystals permitting linear magnetoelectric effect. Of 122 
point groups of magnetic symmetry (magnetic classes) such phase transitions are possible 
in 57; of this number in 43 magnetic classes the said transition conforms to the active 
irreducible representation. It is these groups that are interesting for further con- 
sideration. A lot of specific examples of this kind may be pointed out [6,7] but here we 
shall restrict ourselves only to a general consideration. 

Piezoelectric and piezomagnetic effects, provided they are available, will be ignored 
at this stage. This will allow us to study the electromagnetic waves separately from the 
sound ones. In the next section we shall return to this problem. 

In the study of electromagnetic waves in a dielectric medium we assume Maxwell’s 
equations 

1 aB 1 aD 
r o t E =  rot H = -- c at c at (4) 

since the remaining two equations 

div D = 0 

in case (3) are satisfied automatically. 
The relations between the alternating electric and magnetic fields and polarisations, 

which arise in the electromagnetic wave (all of them are supposed to be weak), have in 
the most general case the following form [6-91 

div B = 0 

D = E + 4np = &E + t H  

B =  H +  4nm = ,iiH+ gTE 
where 

p = R E + Q H  m = RH + QTE (7) 
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& = i + 4x2 p = i + 4JGR t = 4n$. (8) 
The tensors and $ in (5)-(8) describe the linear magnetoelectric effect. The sign 

'T' in (6) and (7) denotes the transpose operation. In the hydrodynamic limits all the 
tensors in (5)-(8) are determined under condition of thermodynamic equilibrium, and 
their form is affected by the magnetic point symmetry of a crystal. The effects of spatial 
and temporal dispersion are absent in this case. The reverse form of the relations (5)- 
(8) is also useful: 

(9) E = f-lp - Am H = p - l m  - ATp 

at the same time 

= [(z-l$k-l)-l - $ T I - 1  

In the hydrodynamic limits the relations may be obtained from the equilibrium 
thermodynamic potential 

f ( ~ ,  H) = -&E . g ~  - ~ H - R H  - E .  $H 

W ( P ,  m) = fp . f - 'p  + im * P - l m  - p a  Am. 

(11) 

(12) 

or 

The E and H fields in (11) and (12) are presented as independent parameters, the values 
of which are determined from Maxwell's equations. 

We remind the reader that the vectors E ,  H, B ,  D ,  p and m in the expressions (3)- 
(12) denote the variable components of the corresponding fields and polarisations 
related to the electromagnetic wave with small amplitude. Besides, the presence of the 
constant and homogeneous fields and polarisations is allowed (if it is compatible with 
the symmetry of the ground state). However, they are insignificant in the present section 
and we shall not introduce any special designations for them. 

The condition of thermodynamic stability for the ground state coincides with the 
requirement of the positive certainty of the quadratic form (12). Thus, in the stability 
region of the symmetric phase, the following inequality is satisfied: 

On approaching the point of the magnetoelectric phase transition from the side of 
the symmetric phase: 

T-  T, A +  0. (14) 

With this some definite components of the tensors 2, R and $ (and consequently &, @ 
and f )  tend to infinity. 

Further interpretation is planned as follows: a detailed study will be dedicated to 
some typical examples and then we shall show the set of magnetoelectric phase transitions 
to reduce to one of these cases. The most suitable from this point of view are the magnetic 
classes of the DZd family, which include one non-magnetic class 

D2d@ (15) 
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Table 1. Transformational properties of t-even (p, 2 )  and t-odd (m) values relative to 
transformations from magnetic point groups of the class D2d. Matrices appropriate to the 
element generators with the unitary part 2xy and U, are given in the second column. 

DZd D2d D2d 

2 X Y  0, (D2)  (cZv) DZd ( s 4 )  

(where R is the group, consisting of 1 and 1’ elements) and four classes with the magnetic 
order: 

(l) D2d(D2) (2) D2d(C2v) (3) D2d (4) D2d(S4). 
Note that the first three magnetic classes from (16) are purely antiferromagnetic and the 
last, the fourth, permits the existence of the magnetic moment along the tetragonal axis. 

The distribution of the Cartesian components of p ,  m and Li values along the irre- 
ducible representations of the magnetic point groups of the D2, family is given in table 
1. The numerical order of the irreducible representation is given in the first column. The 
representation matrices for the element generators with unitary part 2xy and a, are given 
in the second column. In the third and following columns the distribution of t-even and 
t-odd values along the irreducible representations of different magnetic point groups is 
given respectively. The transformation properties of t-even values (p and Li) are equal 
for all the magnetic groups and that is why they are generalised for all the groups in the 
third column of table 1. 

It turns out that all the qualitatively different types of behaviour of the softening 
sound and electromagnetic waves at dipole-active and ferroelastic phase transitions are 
realised at the transitions along the two-dimensional irreducible representation E of 
every point group (15, 16). Therefore, all the examples considered in the following 
sections apply just to this irreducible representation. The examples for other magnetic 
classes are studied in [2] and are given in table 2. 

In all the cases under investigation the direction q I/ z is appropriate to the softening 
branches of the spectrum; consequently only this direction of propagation will be 
considered hereafter?. 

According to (3) only x and y components of the field, polarisation and displacement 
vectors will be other than zero in the softening waves. The corresponding contributions 
to the expressions for f ( E ,  H) and w(p ,  m )  from (11) and (12) (the elastic degrees of 
freedom are ignored in the present section) have the form 

where a, /3 = x, y .  The form of $ and 2 tensors of the magnetoelectric effect is different 

t In consequence of [4] and table 2, [110] and [liO] directions also conform to the softening waves for DZd, 
Du E9 R and DZd(D2) groups. 
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Table 2. Magnetoelectric transitions at which the vector componentsp and m arising in a 
dissymmetric phase are non-collinear. The last two columns refer to the phase transitions of 
the p-m-ii type. The following designations are used in part (c): a and b are two mutually 
normal directions in thexy plane; q,,211 [ k l ,  1,0]. 
(4 

PO m.7 40 U: UaP 4: 
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for every magnetic class (16). From table 1 we have four cases: 

Case 1. Magnetic class D2d(D2) 

VapEaHp = v(ExHx + EYWY) fLpP"p = k(Pxmx + Pymy). (19) 

This case is typical for the state withp 11 m to arise as a result of the magnetoelectric phase 
transitions. 

Case 2. Magnetic class D2d(C2u) 

VapEaHp = W x H y  - E y W  LpP"g = A(Pxmy - Pymx). (20) 
The fact that p and m are not parallel in the dissymmetric phase is most essential here. 
In this casep I m. 

Case 3. Magnetic class D2d 

VapEaHp = v(ExHy + EyHx) LpPamp = u x m y  + Pymx). (21) 
The structure of the combined invariant in (21) is such that mutual orientation ofp and 
m vectors in the xy plane is not fixed. Actually 

Abxmy + ~ y m x )  = 3ipm sin(qp + q m )  
and therefore the value of the angle between vectorsp and m (the difference (qp - qm)) 
does not affect any summand in (18). 

Case 4. Magnetic class D2d(S4) 

Cases 3 and 4 are equivalent, accurate to a rotation of the coordinate system by the angle 
n/4 in the xy plane. 

The stability region of the symmetric phase in the cases (19)-(22) is defined by an 
inequality 

= 1 - A2XoKo = 1 - v'/KX 3 0 (23 )  
which will be assumed to be satisfied. The values 

K = KO/E = kKoxo/E 
(24) 

x = X 0 / E  

E = 1 + 4nx = 1 + 4 n K  ( = 4nv 
coincide with the components of the corresponding tensors from (5)-( 11) ,  which diverge 
at the critical point: at T+ T, 

f - . O  x ,  K, E ,  P ,  v ,  (4 x *  (25) 
After all these preliminary remarks, we turn back to the Maxwell equations and 

consider them individually for cases 1, 2 and 3. It will be shown below that the variety 
of magnetoelectric phase transitions can be reduced to one of these three cases. 

With allowance for the relations (5) and (6)  we obtain from (4) for the plane 
electromagnetic wave 

w q ~ ~ = - - ( ( & ~ + t ~ ) .  w 
C 

x E = -(PH + F E )  
C 
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We shall consider only qllz, which is appropriate to the softening modes of the elec- 
tromagnetic waves. The expressions (17)-(24) then fully define the relations necessary 
for the solution of the set of linear equations (26). 

2.2. Maxwell equations in various cases 

2.2.1. Case 1. Magnetic class D2d(D2). In this case the set of linear equations (26)  with 
(17) and (19) allowed for is reduced to the following form 

(1 + icv/c)E+ + ip(v/c)H+ = 0 

-ie(u/c)E+ + (1 - icv/c)H+ = 0 

(1 - ifv/c)E- - ip(u/c)H- = 0 

iE(v/c)E- + (1 + ifv/c)H- = 0 

(27) 

where 

v = o/q E, = E ,  ? iE, H, = H, L iHy. (29) 

The sets of equations (27) and (28) are equivalent, accurate to complex conjugation. 

equal respectively to 
The velocities of propagation of electromagnetic waves in f z  and - z  directions are 

u / c  = q & p  - f2)-1/2 = + - p ( & o p o  - 1 + 5)-1'2. (30) 
Here, in consequence of (8) and (24), 

E O  = 1 + 4nx0 /lo = 1 + 4JTK0. 

On approaching the point of the magnetoelectric transition from the side of the 
symmetric phase we have: at T+ T, 

c= *y2(Eopo - 1)-112 + 0 (31) 

(32) KO 'J2p , -- (sgn il)xo1I2 m , 

where sgn A = A/lAl.  
Let us note that at T+ T, magnetic and electric polarisations both in the softening 

electromagnetic wave and in quasi-stationary fluctuation wave [2,4] are defined by one 
and the same expression. This absolutely general circumstance results in the coincidence 
of the set of wavevectors, to which the abnormal fluctuations conform, and for which 
the softening hydrodynamic modes exist. 

Thus, in the hydrodynamic region ( 2 )  the velocity of the softening electromagnetic 
waves tends to zero as Ell2, which is in principle analogous to the case of either purely 
ferromagnetic or purely ferroelectric phase transition (see the expression (1) for U,). 
The peculiar behaviour of the polarisation of the softening modes due to the presence 
of the linear magnetoelectric effect, which is defined by the invariant of the form (19), 
is the only difference. 

2.2.2. Cuse2. Magnetic class D2d(C2u). In this case at q(1z the set of equations (26)  with 
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allowance for (17) and (20) also split into independent blocks, describing elec- 
tromagnetic waves of different polarisation: 

(1) EllPlb Hllm IlY 

(2) EllPllY Hllmllx. 
(34) 

For the first and second polarisations we have respectively 

(1 - Cu/c)Ex - p(u /c )H ,  = 0 

- - E ( U / C ) E ,  + (1 - [u/c)Hy = 0 

E ( U / C ) E y  + (1 - I;u/c)Hx = 0. 

(1) 

(2) 
(1 - (u/c)E, + p ( ~ / c ) H ,  = 0 

(35) 

(36) 

The sets of equations (35) and (36) are equivalent, accurate to a rotation by an angle 
of n/2 round the z axis, which is the result of the isotropy of the problem in thexy plane 
(the said isotropy occurs only in cases 1 and 2, which can be seen from the expressions 

The velocities of propagation of the electromagnetic waves of both polarisations in 
(17)-(22)). 

+z and - z  directions are respectively 

u / c  = [C * ( E p ) 1 / 2 ] - 1  (37) 

(38) 

or in an equivalent form (in accordance with (24)) 

v/c = E(4n(sgnA)[(l - &?)x"K"]"~ * [ ( E  + 4nx0)(5 + 4 n ~ " ) ] ~ / ~ } - ~ .  

On approaching the point of phase transition we have from (38) at T-. T, 

5 -  1 
8J'C(KoXo)'12 - 8?G(XK)1/2 -+ 

~ J C ( K ' X " )  '1' 
EOPO - 1 

# 0. - 
u / c  = (sgn A) 

The structure of the softening mode (39) for the polarisation 1 is defined by the 
expressions 

~ ~ ~ / ~ p ~  = (sgn ~ ) x ~ l ' ~ m ,  (41) 

2x0'/2 Px + P x ,  m, (42) 
E X o 1 / 2 ~ ~  = (sgn = - 

y 

which correspond exactly to the structure of the quasi-stationary fluctuation wave (see 
the note after formula (33)). For the polarisation2 we have similar expressions, differing 
from (41) and (42) by a rotation round the z axis by an angle of n/2. 

Undoubtedly, the violation of the reciprocity law, i.e. the velocities of the elec- 
tromagnetic waves in the forward and backward directions are different in magnitude, 
is the most peculiar feature in the situation described above. This difference is most 
pronounced at the critical point of the magnetoelectric phase transition, where the 
velocity of the electromagnetic wave becomes zero only for one of the possible directions 
of propagation (+z  or - z ) ,  depending on the sign of A (see formulae (39) and (40)). 

It is also important that the critical anomaly in the velocity of propagation of the 
electromagnetic waves is here much stronger than in all previously described cases. 
Indeed, in case 1 and also at dipole-active phase transitions in crystals, having no linear 
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magnetoelectric effect, the velocity of the electromagnetic waves at T+ Tc tends to zero 
as But in case 2, according to (39) the velocity of the softening wave is proportional 
to 5. Note that with the disregard of the fluctuation effects, 6 cc IT - Tel. 
2.2.3. Case 3. Magnetic class Did. At 4/12 for the waves with polarisations 1 and 2 from 
(34) we have, according to (26), (17) and (21), 

(1 - Cu/c)E, - p(u /c )H ,  = 0 

- & ( U / C ) E ,  + (1 - Cu/c)H, = 0 

(1 + Cu/c)E, + p(u/c)H, = 0 

& ( V / C ) E y  + (1 + S'u/c)H, = 0. 

(1) 

(2) 

(43) 

(44) 

The velocities of propagation for the electromagnetic waves with polarisations 1 and 
2 in the ?z directions are 

(1) u/c = [5'" (Epp21-1 

(2) u /c  = [-C k (&p)1'2]-1 

(45) 

(46) 
or in other notation (see (24)) 

(1) u/C = 5{4n(Sgn A) [ (1 - 5)X°K0] 1'2 k [ ( 5  -k 4nX0) ( 5  + 4nK")] '/'}-I 

(2)u/C=5{-4n(Sgn/1)[(1 - 5)X"K0]"* f [(5+4nXo)(5f4nK0)]1'2}-1. 
(47) 

(48) 
The ? signs in (45)-(48), as in the expressions (30), (31), (37) and (38), refer to the 

Finally, on approaching the point of phase transition we obtain for the polarisations 
electromagnetic waves propagating in two opposite directions along the z axis. 

1 and 2: at T+ T, 
1 

(49) 

# O  (50) &"p0 - 1 

(51) 

# 0. (52) &"(U0 - 1 

5 -  
8 n ( ~ " ~ " )  - 842.) 'I2 + 

8 n ( ~ " ~ " )  ' I 2  - 

1 5 -  
8 4 ~ " ~ ~ )  - S ~ ( X K )  'I2 -+ 

87G(K0X0) - 

(1) u / c  = (sgn A) 

(mode (49)) (53) 

(mode ( 5  1)). (54) 

1 (2) u / c  = -(sgn A) 

The structure of the softening modes is defined by the expressions 

(I) ~ ~ ~ / ~ p ~  = (sgn il)~0'/2m, 

(2) K O ' / ~ P ,  = -(sgn 

Let us note that every formula concerning polarisation 1 for case 3 coincides with 
the corresponding formula for case 2 (expressions (35) and (37)-(42)). As for the 
electromagnetic wave with polarisation 2, the expressions describing it differ from (36)- 
(40) only in the sign of A(C). 

Thus, in case 3, for each of the polarisations 1 or 2 from (34) the velocities of 
propagation of the electromagnetic waves in the +z and -z  directions differ in mag- 
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nitude, as in case 2. However, the velocity of the wave with polarisation 1 (2) and the 
velocity of the wave with polarisation 2 (l), propagating in the opposite direction, are 
equal in magnitude. At T-+ T, the velocity of the softening electromagnetic waves is 
linearly decreased along 

It should be noted that in case 3 some other directions of propagation conform to the 
softening waves (see [4] and table 2). However, at q # qz the velocity of the softening 
waves decreases essentially more slowly-as E*'*. A more detailed analysis is given in 

Since this problem is of special importance we shall now thoroughly consider the 

as in case 2. 

PI * 

symmetry aspects of the above-described reciprocity relations. 

2.3. Symmetry aspects of reciprocity relations 

The spectrum of the arbitrary linear excitations (plane waves) consists of a set of 
frequencies {w,(q)} where n is the number of the branch of the spectrum. We assume 
that the reciprocity law is satisfied in the wide sense provided the sets of frequencies 
{w,(q)} and {w,( -4)) coincide. The numerical order of the frequencies in these sets may 
be different, e.g. w,(q) = wz( -q) ,  etc. 

To satisfy the reciprocity principle it is necessary and sufficient for the symmetry 
group of the crystal G to contain an operation that would change the sign of the t-odd 
polar vector U ,  parallel to q 

g v =  -v g € G  U II 4. (55 )  
If group G contains the inversion i or the time inversion operation 1' , then the condition 
(55)  is satisfied at any q and the sets of frequencies {U,( -4)) and {w,(q)} coincide. 

Such fulfilment of criterion (55 )  means that the reciprocity principle (in the wide 
sense) is satisfied for any plane linear waves in the given medium for the direction of 
propagation pointed out in (55). Let us consider just the electromagnetic waves. Here 
we can find such an effect where the violation of the reciprocity principle, unless the 
criterion (55)  is satisfied, can only be the result of spatial dispersion and, therefore, falls 
outside of the hydrodynamic consideration. In the hydrodynamic approximation the 
reciprocity principle is violated only in crystals with linear magnetoelectric effect, 
Indeed, at f = 0 equations (26) are known to be invariant relative to the substitution 

4 - j  -4 w+ w H+ -H E-+ E. (56) 

Analysis of all possible magnetoelectric phase transitions shows that for the softening 
branches of the spectrum of electromagnetic waves the reciprocity principle in the 
hydrodynamic limit is satisfied when a condition weaker than in (55) is obeyed: 

The vector v o  from (57) is known to be an invariant of the group G. Therefore, the 
invariance of maybe one t-odd polar vector vo is a sufficient condition for the violation 
of the reciprocity principle for the electromagnetic waves in the hydrodynamic limit. 

Simple comments concerning the idea of criterion (57) are as follows: Given vI / z ,  
the invariance U ,  relative to the operation from G means also the invariance of the 
bilinear form 

Pxm, - Pymx (58) 
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since the transformational properties of U ,  and the values (58) coincide. But from the 
analysis of case 2, it can be seen that it is just the invariance of type (58) in the expression 
for w ( p ,  m)  that is responsible for the violation of the reciprocity principle. 

The possibility of violation of the reciprocity principle for the electromagnetic waves 
in the hydrodynamic case is pointed out in [lo]. The situation there conforms to the 
magnetic classes D2 or DZh(D2). In this case the velocities of the electromagnetic waves 
do not coincide for the forward and backward directions, only when the wavevector has 
all three non-zero projections onto the rhombic axes (note that the criterion (55)  is 
satisfied provided qxqyqz = 0). This case is not of interest to us, since the directions 
normal to one of the second-order axes conform to the softening branches in the said 
magnetic classes. More detailed information on the aspects of the electrodynamics in 
magnetoelectric media is given in [6,7]. 

The violation of the reciprocity principle in the wide sense for the softening elec- 
tromagnetic waves-both conditions (55)  and (57) at 4112 are not obeyed with all the 
consequences ensuing therefrom-is the most significant feature in the above considered 
case 2. 

A quite different situation is realised in case 3 (magnetic class D2J. Both criteria 
(55)  and (57) are satisfied here (at qllz), and therefore the reciprocity principle in the 
wide sense holds true even outside the limits of the hydrodynamic approximation. 
Nevertheless, for any two polarisations (34), the velocities of propagation of the elec- 
tromagnetic wave in the +z and -2 directions differ in magnitude (see formulae (45) 
and (46)). In this case the violation of the reciprocity principle is to be understood in the 
narrow sense. With the relations (56) allowed for, it is easy to understand that in the 
hydrodynamic limit the said violation even in the narrow sense is possible only in crystals 
with linear magnetoelectric effect. 

2.4. Critical behaviour in various cases 

The relations described above present a reasonable basis for the classification of possible 
types of behaviour of the softening electromagnetic waves at magnetoelectric phase 
transitions. In a crystal with linear magnetoelectric effect at any set directions of q ,  four 
electromagnetic waves, which differ in polarisation and direction of propagation, should 
be considered. The velocities of propagation of these waves will be denoted respectively 

v + ( l >  v - (1> U + (2) U - (2) (59) 
where the + and - signs denote two opposite directions of propagation and the numbers 
1 and 2 denote the polarisation of the waves. 

At the critical point of the magnetoelectric phase transition with definite directions 
of q ,  some of the values (59) become zero. The analysis carried out for crystals with 
different magnetic symmetry shows that three types of critical behaviour for the softening 
branches of the spectrum of the electromagnetic waves are possible in accordance with 
those three examples discussed above. 

2.4.1. Casel.  A t  T-  T, 

(a) v + ( I )  = - v - ( I )  = v+(2) = -U-@) - E ’ / ~ + o  (60) 

( b ) v + ( l )  - v - ( ~ ) - E ” ~ + O  v + ( 2 )  = - v - ( 2 )  # 0. (61) 
In case 1 the reciprocity principle is valid and the critical behaviour of the velocity of the 



Softening electromagnetic and sound waves 2591 

softening electromagnetic waves is analogous to the case of the dipole-active phase 
transitions in crystals without any linear magnetoelectric effect. Only a specific behaviour 
of the polarisation of the softening modes testifies to such an effect. Case 1 is realised in 
those crystals where electric and magnetic polarisations are related as 

AmgPnmg = / 2 p y m y .  (62) 
The Cartesian index runs over values 1, 2 or 3, depending upon the dimensionality of 
the irreducible representation responsible for the phase transition. And if the direction 
q coincides with a symmetry axis above second order, both polarisations are equivalent 
(case (60)); otherwise the electromagnetic wave of only one of the polarisations is 
softened (case (61)). 

2.4.2. Case2. A t  T-, T, 

(a) u + ( l >  = u+(2) - E + O  

(b) v + ( l >  - E +  0 

u- ( l )  = u - ( 2 )  # O  (63) 

(64) v - ( l > ,  v+(2), L ( 2 )  # 0. 

Similarly to case 1, the expression (a) corresponds to the situation where the direction 
of wave propagation q coincides with a symmetry axis of higher than second order. 

The violation of the reciprocity principle in the wide sense-a discrepancy in the 
velocities of the electromagnetic waves that propagate in the forward and backward 
directions-is the most characteristic feature of case 2. Note that at the critical point this 
discrepancy is most pronounced. Besides, the critical anomaly in the velocity of the 
softening waves is much more pronounced in case 2 than in case 1 and in crystals without 
linear magnetoelectric effect, i.e. on approaching T, the velocity of the wave is decreased 
linearly along 5, but not as in case 1. The list of magnetic classes related to case 2 is 
given in tables 2(a )  and (b). 

2.4.3. Case3. A t  T-, T,, q11z 

v + ( l )  = -v-(2) - 5-0 L ( 1 )  = -u+(2) # O .  (65) 
In this case the reciprocity principle is satisfied in the wide sense. However, for each of 
two polarisations the velocity of the electromagnetic waves for both directions is 
different, i.e. in the narrow sense the reciprocity principle is violated. Case 3 is realised 
only at the magnetoelectric phase transitions along the two-dimensional irreducible and 
physically irreducible representations in tetragonal crystals. The list of the corresponding 
magnetic classes is given in table 2(c). 

Let us note that, in every magnetic class related to case 3, along with the z axis 
there are two more mutually normal planes to which the softening branches of the 
electromagnetic waves spectrum conform. However, if q is not parallel to z ,  the critical 
anomalies in the velocities of propagation of the corresponding waves are weaker 
( U  - ‘p). 

2.5. Summary 

A more detailed description of the results concerning different magnetoelectric phase 
transitions is given below. 

Of 43 magnetic classes, having common active irreducible representations for the 
vector components p and m, in 17 the corresponding combined invariants have the 
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structure (62) and are related to a less interesting case 1. The results for the remaining 
26 point groups of magnetic symmetry are shown in table 2;  note that case 2 is appropriate 
to tables 2(a) and (b ) ,  and case 3 to table 2(c). 

The list of the corresponding 26 magnetic classes is in the first column of table 2. The 
basis functions constructed of the vector components p and m and transforming along 
the irreducible representations responsible for the magnetoelectric phase transition are 
given in the second and third columns. 

It is the magnetic classes containing only one-dimensional representations that are 
given in table 2(a)  (there are two irreducible representations of the type p-m in every 
group czh(cs), C2v, D2(C2), D2h(C2v)). Two-dimensional irreducible and physically 
irreducible representations are given in tables 2(b )  and (c); the corresponding basis 
functions are also shown. In consequence of [9] we shall consider the operation of time 
inversion 1' to change the sign of the t-odd values, however still being linear? (not 
connected with complex conjugation). Bilinear invariants, which conform to the physi- 
cally irreducible representations, have the structure 

Pxmx + P)"y p+mT = p + m - - )  

Pxmx - Pym, 

Pxmy + Pymx. 
p+m! =p+m+ + 

The invariants of type (66) and (67)  arise respectively for the cases in tables 2(b )  and 
(c). The directions of the wavevector to which the softening branches of the elec- 
tromagnetic waves spectrum correspond are pointed out in the fourth column of table 
2. In the cases from tables 2(a) and ( b )  only the direction of the wavevector is appropriate 
to the softening waves and in the cases from table 2(c)  the corresponding wavevectors 
lie in the mutually normal planes having the crystallographic axis z .  

The invariant components of the polar t-odd vector U from (57) are given in the fifth 
column. For the cases in table 2(c)  U' = 0 at any U. 

Some of the magnetoelectric phase transitions are at the same time proper ferroelastic 
ones. Here they are presented byp-m-li transitions. Tensor components of the defor- 
mations that are transformed as the order parameter of the phase transition are given in 
the sixth column for such phase transitions. Striction interactions at phase transitions 
result in the decrease of the number of directions of wavevectors to which the softening 
hydrodynamic waves are appropriate. In accordance with this, the directions of propa- 
gation of the softening waves, still taking into account all three long-range interactions, 
are given in the last column of table 2. A dash in the last column means that the softening 
hydrodynamic modes (bound sound and electromagnetic waves) are absent in this casef . 
A detailed description of these items will be quoted in the following section. 

t Such an approach is justified only for the study of the static and quasi-static processes, i.e. in the limits of 
applicability of the hydrodynamic principle of local equilibrium. 
$ In the same cases, a simultaneous account of three long-range interactions-electric dipole, magnetic dipole 
and striction interactions-leads to a complete suppression of anomalous critical fluctuations at the point of 
phase transition of the type p-m-ii (41. Let us note that such a complete striction suppression of the critical 
fluctuations is also possible at a phase transition without any change of the symmetry in the vicinity of the 
critical point on the line of the phase transition of the first kind [ll,  121. 
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3. Bound electromagnetic and sound waves in crystals with linear piezo-effect 

Maxwell’s equations (4) and Newton’s equation are assumed in dynamic form in this 
case. Newton’s equation is taken as 

a 

where 6 is the stress tensor. 
For plane waves, instead of (4) and (68) we have 

(69) 
P 0 2 U a , B  = 4p4yayw 

For a simplification both parts of equation (68) are coordinate differentiated. Taking 
into account the possibility of the existence of linear piezoelectric and piezomagnetic 
effects, we have instead of (5)-(7) the following relations: 

Dn = EnpEp + L p H p  + G ? p y q 9 y  

Ba = P p P p  + PnpHp + fL?pyapy 

unp = VICfLpEy + VfLpHy + S * p , y d ~ y s  

Pn = XnpEp + V n . p H p  + V$,)pyap, 

ma = Vp,nEp + K n p H p  + v e p y q y .  

(70) 

(71) 

The tensors E ( ’ )  = 4n$’) and f ( 2 )  = 4n$*) describe the linear piezoelectric and 
piezomagnetic effects. In the limits of the hydrodynamic approach the relations (70) and 
(71) may be obtained from the thermodynamic potentials as 

(72) f ( E ,  H,  6)  = -&E.  f E  - &H. RH - $ 6 .  $6 - E .  $H - E .  $(I)& - H .  $(2)& 

or in the variablesp, m, ii as 

E ,  H a n d  6 in (72) are independent parameters, the values of which are obtained from 
the dynamic equations. 

The stability of the ground state is defined by a positive definiteness of the quadratic 
form (73). On approaching the point of phase transition from the side of the symmetric 
phase its determinant A tends to zero and some definite components of the tensors f ,  R, 
$ l ) ,  $*) and $ tend to infinity. 

Further description is built up the same way as in the previous section. We study in 
detail some of the most typical examples and then we show the whole set of dipole-active 
ferroelastic transitions to reduce to one of these cases. As we have already noted, all the 
qualitatively different situations are realised at the ferroelastic phase transitions along 
the two-dimensional irreducible representations of the magnetic groups (15) and (16). 
Therefore, in 00 3 and 4 we shall repeat the analysis of the dynamics of the softening 
hydrodynamic modes for the same cases as in the previous section. However, this time 
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the elastic degrees of freedom will also be taken into account sequentially, which will 
allow us to study the bound electromagnetic and sound waves. 

Looking ahead let us note two important circumstances. It turns out that in all the 
cases allowance for the interaction with the elastic oscillations does not result in any 
qualitative change of the propagation behaviour of the electromagnetic waves-the 
whole effect comes from a negligible renormalisation of the velocity of the elec- 
tromagnetic wave. As for the retroactive effect of the electromagnetic oscillation on 
the acoustic ones?, it appears that the qualitative changes in the character of sound 
propagation are observed only in piezo-crystals also having linear magnetoelectric 
effect. This will be discussed later. Now we shall briefly discuss a situation that happens 
at dipole-active ferroelastic transitions in crystals without linear magnetoelectric effect. 
We take as an example the ferroelectric-ferroelastic phase transition, which proceeds 
along the two-dimensional representation of the point group D2d@ R from (15). 

When the electromagnetic and transverse sound waves propagate with q IIz, only x 
and y components of the fields, polarisations and displacements arise in a crystal with 
symmetry DZd @ R. The corresponding contributions to the thermodynamic potentials 
(72) and (73) have the form (see table 1) 

f(E, H ,  b) = -$x(Ef + E;) - is(& + G ; ~ )  - VI(E,a,, - E,o,,) 

- $K(Hf  + H ; )  (74) 

1 

2K0 
+ - (mf + m;) (75) 

where u . , ~  = au,/axp is the distortion tensor. Besides, K = KO; also 

x = X0/E s = so/g Vl = hlxOsO/E (76)  
g = 1 - A:xos" = 1 - lp:/xs 2 0. (77) 

E - ,  0 x, s, V19 E ,  51 + O0* (78) 

On approaching the critical point from the side of the symmetric phase: at T-+ T, 

At q11z the equations (69) for the bound electromagnetic and sound waves split 
into two independent systems, which describe waves of different polarisation (see the 
analogous expressions (34) for purely electromagnetic waves) 

(1) EllPlb Hllmlly UIIX (79) 

(2) EllPIlY Hllmllx U IlY. (80) 
Secular equations describing waves of different polarisation have the same forms 

(81) 
ES 

t In other words we speak here of either electric or magnetic dipole interaction lag effects on the character of 
sound propagation in crystals with linear piezo-effect. 
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or in equivalent form 

&"Po 
ps" 7 j -  U 4  - ($ (4nx" + 6) + ps" 

c 

On approaching T, from the side of the symmetric phase we have four solutions of 
the secular equation 

The + and - signs describe waves that propagate in two opposite directions along the z 
axis. The meaning of the indices s and c will be given below (see formula (85)). 

Thus the solution of us* conforms to the softening mode of the bound electromagnetic 
and sound waves. We have still not used anywhere a supposition on a small value of the 
sound velocity relative to the yelocity of the electromagnetic waves. Let us consider now 
this rather natural approximation. The given relation is a small parameter 

(ps") - lI2 
C(&",LLO) -U2 

v =  1. (84) 

The electrostatic approximation for the sound and the 'frozen lattice' approximation 
for the electromagnetic wave conform to zero order with respect to v :  

In the first non-vanishing approximation with respect to v we get 

Thus the difference between the sound velocity in a piezoelectric and the value 
obtained from the electrostatic approximation does not depend upon the closeness to 
the critical point and is proportional to an excessively small parameter v 2 .  An analogous 
result was obtained in [13] where, however, the region of phase transition was not 
studied. 

A similar consideration for a piezomagnet leads to the same conclusions. The only 
difference is confined to the following substitution in the expressions (81)-(85): 

P * &  X + + K  A 1  + + A 2  Vl f, V2.  (86) 
In conclusion to this section let us nole that outside the limits of the electrostatic 

(magnetostatic) approximation when describing the dynamics of the softening mode 
at the ferroelastic transitions in crystals .with linear piezo-effect the situation is not 
qualitatively changed-as is customary, the velocity of the softening wave decreases at 
T+ T, as E l l 2 ,  the only effect being a weak (proportional to v 2 )  renormalisation of the 
velocities of sound and electromagnetic waves. Note that the relative value of this 
renormalisation does not depend upon the closeness to the critical point. A quite 
different situation arises at the dipole-active ferroelastic phase transition in a crystal 
with linear magnetoelectric effect. This problem will be discussed in the next section. 
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4. Crystals with linear magneto-electric and piezo-effects 

This section is central because here we consider the situations when allowance for a lag 
effect of the electromagnetic interactions qualitatively changes the character of the 
propagation of the sound wave. These peculiarities are most pronounced near the point 
of the dipole-active ferroelastic phase transition. 

So, we shall continue the interpretation of the peculiarities of the propagation of the 
bound electromagnetic and sound waves at the phase transitions of thep-m-O type. Such 
transitions are rather common-almost half of the magnetoelectric phase transitions are 
ferroelastic at the same time. Before we start with particular examples we present simple 
semi-qualitative considerations based on the results from 0 2. 

In some cases the presence of a linear magnetoelectric effect may result in the fact 
that the velocities of the electromagnetic waves in forward and backward directions 
would not coincide even in the hydrodynamic limits. Assume now that there is a linear 
binding between the corresponding electromagnetic waves and the sound in such a 
crystal. The same 'non-reciprocity' could also be expected for the acoustic waves (rig- 
orously speaking only the bound electromagnetic and sound waves may be mentioned 
here). First, the said effect is electrodynamic in origin, secondly, it does not disappear 
inthelong-wave rangeq, CO + 0 (i.e. it ishydrodynamic) and, finally, it isveryconvenient 
for experimental observation. The value of this effect turns out to be proportional to the 
first power of the small parameter v from (84). 

At ferroelastic and dipole-active phase transitions in crystals without linear mag- 
netoelectric effect the velocity of the softening waves decreases on approaching T, as 
Ell2, where f is proportional to the reverse generalised susceptibility appropriate to the 
order parameter of the phase transition?. Provided this transition is at the same time 
both dipole-active and ferroelastic we can formally speak of only the softening of the 
bound electromagnetic and sound waves-the ratio of the sound and electromagnetic 
waves in the formation of the soft mode does not change at f -+ O$. The situation would 
change considerably in the presence of linear magnetoelectric effect. According to the 
results from § 2 the velocity of the softening waves at T+ T, may decrease in this case 
more rapidly-as the first power of f .  Now we can speak about softening of just 
electromagnetic waves since the density p falls out of the expressions for the velocity of 
the softening wave at f +  0, which will be described below. 

With account taken of the above, let us consider three examples of phase transitions 
of the p-m-O type, which, according to the electrodynamic classification from § 2, refer 
to the cases 1 , 2  and 3. This classification will be preserved here. 

4.1, Case 1. Magnetic class D2d(D2) 

In the frames of this magnetic group one and the same vector components p and m have 
equal transformation properties (see (19) and table l), and as a result of p-m-fi phase 
transition there appears a polar phase withp"(1m". As it turns out the critical behaviour 
of the softening branches of the bound electromagnetic and sound waves with q11z 
resembles the case for either piezoelectric or piezomagnetic transition in crystals without 
linear magnetoelectric effect (at T+ T,, v,+(l)  = v,,(2) - f ' I2)>.  This case is the least 

7 In Landau theory for phase transitions of the second kind 5 - IT - T,I. 
$ It is seen in particular from the structure of the expression (83) for the velocity of the softening wave. 
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interesting and therefore here we shall not give expressions for the corresponding 
velocities and polarisations. 

4.2.  Case 2.  Magnetic class DZd(C2J 

Instead of (74) and (75) we have the following expressions for the contributions to the 
thermodynamic potentials f ( E ,  H ,  6) and w(p, m,  a), connected with the propagation 
of the transverse sound and electromagnetic waves with q ) ) z  (see table 1): 

f(E, H ,  6) = -hX(Ez + E;)  - h K ( H 2  + H ; )  - hS(U;, + 05,) - v(E,H,  - E , H x )  

- v 1 (Ex 0 x 2  - E,  a y 2  1 - v2 (H ,  0 x 2  + Hx 0 y z  1 (87) 

- ~ l ( P x U x , *  - P y U y , z )  - A2(myux,2 + mxuy,r). 
The constants present in (87) and (88) are related by the expressions 

At T -  T,, 5- 0 and all the parameters from (87) also diverge according to (89). 
If we put A = A 2  = 0, then the expressions (87)-(91) coincide with the corresponding 

formulae from the previous section, dedicated to piezoelectrics (or to piezomagnetics 
at A = A I  = 0). If we put A l  = A 2  = 0 the whole consideration will be reduced to case 2 
from § 2. 

The dynamic equations (69) for bound electromagnetic and sound waves with 
account of relations resulting from (87) also split at q11.z into two separate systems, which 
describe the waves with different polarisations (see expressions (79) and (80)). 

The secular equations corresponding to both polarisations have the same form 

(92) ( . 2  - ( c  (0' - l/ps) = 8Jd - v1v2 ( c  - 5u)u3 + 4Jd (g + $) u 4 .  
&P 

Equation (92) has four different roots describing for each polarisation (79) and (80) 
two bound electromagnetic and sound waves propagating in two opposite directions 
along the z axis. 

In consequence of § 2 the forward and backward directions cannot be equivalent; 
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that is, for each polarisation 1 or 2 
v,+(l) = u,+(2) # -u,-(l)  = - 4 2 )  

U , + ( l )  = u,+(2) # -U&) = -u , - (2 )  
(93) 

where as before + and - denote two opposite directions of wave propagation with q11.z. 
Indices s and c have a simple physical sense in the ultimate case, where it is possible to 
consider separately in a good approximation the sound (s) and the light (c). 

When approaching T, from the side of the symmetry phase one of four roots from 
equations (92) turns to zero: at T 4  T, 

Thus, in case 2 the velocity of the softening mode at T+ T, decreases much more 
rapidly than in the case discussed in the previous section. Note that, since the density p 
vanishes from the asymptotic expression (94) for the velocity, one can state that in this 
case the role of the softening mode formally belongs to the electromagnetic waves. As 
for the elastic deformations, in the limits of (94) they succeed in a quasi-static manner 
to adapt to the fields and polarisations existing in an electromagnetic wave. Therefore, 
it is natural that the expression (94) is in agreement with the corresponding expression 
(39), which is related to the case of a purely electromagnetic wave. In particular, the 
direction of propagation of the soft mode (the direction + or - along the z axis) is 
defined by the sign of g. Note one more essential circumstance, which is not closely 
associated with a phase transition. We shall discuss the violation of the equality of the 
velocities of transverse sound propagating in two opposite directions along the z axis. 
In the first non-vanishing approximation with respect to a small parameter v from (84) 
we obtain from (92) for this difference 

where in the zero approximation with respect to v 
(0) = - (0) = (ps)-w* U , +  us- 

The effect in (95), unlike the electrodynamic correction in (85), is linear with respect 
to v and consequently much stronger. Moreover, in this case not only a correction is 
meant but also a qualitative change in the character of the sound propagation-the 
violation of the reciprocity principle in the formulation, presented in 0 2. Such an effect 
can easily be observed in an experiment. 

4.3. Case 3. Magnetic class DZd 
Here instead of (87) and (88) we have the following expressions for the thermodynamic 
potentialsf and w related to the propagation of sound and electromagnetic waves 

f(E, H ,  s) = -hx(E; + E;)  - k ( H 2  + H ; )  - hs(u~, + - v (E ,Hy  + EyH,)  

- vjf(Exa,z - E p J  - V 2 ( H p x z  - Hxayz). 

- ~ l b x % z  - - P y U y , z )  - A 2 ( m y u , , *  - m x U y , z ) .  

Relations (89)-(91) hold here. 
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Here, as in case 2, the dynamic equations with account taken of substantial relations 
at q 11 z split into non-bound sets of equations, which describe the waves with polarisations 
1 from (79) and 2 from (80). Note that the equations describing the waves of the first 
polarisation are exactly equivalent to the corresponding equations of the magnetic class 
D2d(C2v) (case 2), whereas the equations describing the waves of the second polarisation 
differ from those of case 2 only in the substitution 

According to (89)-(91) there should also be the substitution 
v+ -v v 2  + -v2* (96) 

A--, -A e-. -e A, + - A 2  e 2  + -e** 
Thus, the secular equation describing the waves of the first polarisation coincide with 

(92) and for the waves with the second polarisation it differs from (92) by the substitution 
(96). It is easily seen that substitution (96) in equation (92) is equivalent to the sub- 
stitution U + - U .  Therefore, in the considered case 3 we have instead of (93) for every 
polarisation 1 or 2 

u,+(l)  = -u,-(2) # v,+(2) = -v,-(l) 

v,+(l) = -v,-(2) # v,+(2) = -v,-(l) .  (97) 

The expressions (94) and (95) as well as all the comments hold here (with account of 
the substitution (96) for the waves of the second polarisation). 

The formulae (97) are analogous to the relations (65). The reciprocity principle for 
the sound in the wide sense is satisfied here; however for each polarisation the wave 
velocities 'forwards' and 'backwards' differ in magnitude, and therefore in the narrow 
sense the reciprocity principle is violated. 

4.4. Case 4. Magnetic class DZd(S4) 
This case differs from the previous one only in the fact that instead of (79) and (80) the 
normal modes with q ( 1  z have the following polarisations 

(1) E ,  = E,  H ,  = -Hy 0 x 2  = - 0 y z  

(2) E,  = -E, H ,  = H ,  0 x z  = O y z  

(and similarly for the componentsp, m and a). The relations (97) and all comments hold 
true here. This is the reason for the magnetic classes D2d(S4) and DZd to be related to 
case 3 according to the classification in tables 1 and 2. As before, the velocity of the soft 
mode near the critical point is defined by a purely electrodynamic expression (94). There 
are two waves that soften: the first with polarisation 1, which propagates in one of the 
directions along the z axis, and the second with polarisation 2, propagating in the 
opposite direction. 

Let us note now one significant difference between the magnetic classes DZd and 
D2d(S4) concerning their acoustic properties. The matter is that the above consideration 
concerns only either non-polarised crystals (i.e. crystals for which the equilibrium values 
of 'the electric p" and magnetic m" polarisations are zero) or at least cases where the 
intensity of the homogeneous part of the electric and magnetic fields (E" and H" respect- 
ively) is zero in the crystal. Otherwise, allowance for the effects resulting from violated 
rotational invariance of the energy density of the crystal becomes necessary. The cor- 
responding effects are rather thoroughly analysed in [l], so we do not return to the 
problem. Note only that, in the case of the polarised crystals at E" or H" being non-zero, 
the velocity of the softening waves in a critical point depends upon mechanical boundary 



2600 V G Bar'yakhtar et a1 

conditions, since the boundary conditions influence the position of the critical point 
itself. Finally, in magnetically polarised crystals (case 4) at rather strong external field, 
the Lorentz force (l/c) [J" x B ]  + ( l / c )  [p" X B ]  should be taken into account in the 
right part of the equation (68) for motion. 

4.5. Summary 

A brief outline of the main results of the fourth section is given below. 
In crystals with linear piezo-effect the number of softening branches of the spectrum 

of the bound acoustic and electromagnetic waves is less than it could be without allowance 
for the connection of polarisation with deformation. In particular, for transitions of the 
p-m-c2 type in the last column of table 2 the wavevectors q*, to which the softening 
modes conform, are given. From the comparison of the fourth and last columns it is seen 
that allowance for the piezo-effect decreases the number of directions to which the 
softening modes for all the cases in table 2(c) conform. In some cases from table 2(a)  
the softening modes completely disappear?. 

If without allowance for the piezo-effect the velocity of the softening electromagnetic 
waves tends to zero linearly along E (which is possible only for the p-m-c2 transitions 
from table 2), first, its account will preserve this dependence and, secondly, at rather 
small E we can speak of the fact that it is the electromagnetic waves that soften but not 
the sound (the density p is absent in the expressions for the velocity of the softening 
branch). But if the velocity of the electromagnetic waves without allowance for the 
piezo-effect decreases at T+ T, as E''', we can formally speak only about the softening 
of the bound elastic and electromagnetic waves. 

5. Conclusions 

Summing up our considerations of the dipole-active and ferroelastic phase transitions 
in dielectrics we shall emphasise once more that the behaviour of the softening elec- 
tromagnetic or sound waves differs in the main from the 'classical' one (see formulae 
(1) and the corresponding comments) only in crystals with linear magnetoelectric effect. 
This circumstance is reflected in the title of the paper. The corresponding anomalies are 
described rather in detail in 09 2 and 4. As for conducting crystals, a quite different 
picture appears here. We present a brief summary of the problem. 

In the case of plane transverse waves, which conform to the condition (3), allowance 
for electrical conduction reduces to the following substitution in the Maxwell equations 
(26) : 

&+  2 + i4nd//o 

where 13 is the tensor of the electrical conductivity. An analogous substitution should 
be made in all the dynamic equations considered before, describing the softening 
electromagnetic as well as bound electromagnetic and sound waves. Analysis of the 
corresponding dispersion equations falls outside the limits of the present paper. An 
independent paper will be dedicated to this problem [14]. Now we restrict ourselves to 
quoting some basic conclusions. 

In the low-frequency limits 4 n a / ~ o  B 1, the electromagnetic waves cannot propa- 

t See footnote at very end of 0 2.  
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gate in the substancet (see for example [SI). Therefore we shall confine ourselves to the 
consideration of acoustic waves in crystals with linear piezo-effect. 

In conducting piezoelectrics the character of the propagation of transverse sound 
does not differ practically from the case of dielectrics. But in the region of the ferroelastic 
(piezoelectric) phase transition even such a negligible difference vanishes. 

In a conducting piezomagnet the velocity of transverse sound in the low-frequency 
limits is defined by the expression 

On approaching the point of the piezomagnetic phase transition: 

p - s - E - 1 +  CO, 

With this, the velocity of the low-frequency sound U, remains finite: at T+ T, 

The role of the ‘softening’ mode passes to a fully damped electromagnetic wave with 
the quadratic law of dispersion: at T+ T, 

A similar situation also occurs in conducting piezomagnetoelectrics. 
Naturally, all these conclusions refer to purely transverse waves-just they are 

softening in all cases of our interest. But if the condition (3) is not satisfied, then 
significantly stronger electrostatic effects, connected with the advent of bulk charge 
density in the sound wave, will advance forward in piezoelectrics and piezo- 
magnetoelectrics [8, 131. 
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